The Optical Fiber

- Overview
 - Fiber geometry
 - Fiber parameters
 - Confinement process
 - Electromagnetic modes
 - Step-index and graded-index fibers
 - Multimode and single-mode fibers

Optical Confinement

- Passing from high-index medium to low-index
 - -n = c/v; $n_{glass} = 1.4 \rightarrow 1.5$

- Snell's Law: $\theta_{\scriptscriptstyle t} = \sin^{-1} (n_1 \sin \theta_{\scriptscriptstyle i} / n_2)$
- If angle of incidence exceeds critical angle, $\theta_c \equiv \sin^{-1}(n_2/n_1)$
 - Total internal reflection
 - » Light reflects at interface with NO loss
 - » Light guided down fiber

Fiber Geometry & Step-Index Profile

- Geometry (left)
 - -Core
 - Cladding
 - Buffer (outside cladding)
 - -Jacket

- Abrupt change at core-cladding interface

$$n_2 \approx n_1 (1 - \Delta)$$

 Δ is "fractional change of n" $\Delta = n_1^2 - n_2^2 / 2n_1^2 \approx (n_1 - n_2) / n_1$

•Typical values of Δ : 0.001 \rightarrow 0.02 (i.e., 0.1% to 2%)

Fiber-3

Cladding

Representative Fiber Parameter Values

Table 2.1, p.20

Туре	Core diam μm	Cladding diam µm	Δ
8/125 SM	8	125	0.1-0.2%
50/125 MM	50	125	1-2%
62.5/125 MM	62.5	125	1-2%
100/140 MM	100	140	1-2%

Step Index (SI) Fibers: Waveguide Modes

- Cylindrically-symmetric dielectric waveguides
- Model and solve for the electromagnetic fields
- Certain characteristic electromagnetic modes can propagate
 - Simplest modes
 - » Modes with radial symmetry
 - » TE (transverse electric)
 - » TM (transverse magnetic)
 - Hybrid modes also exist
 - » Combinations of TE and TM
 - » HM_{mn} and EH_{mn} modes
 - Linearly polarized
 - » *LP_{mn}* modes
- Each mode has its own propagation constant

Mode Behavior

- Fiber V-parameter: $V = (2\pi a/\lambda)\sqrt{n_1^2 n_2^2} \approx (2\pi a n_1/\lambda)\sqrt{2\Delta}$
- Each mode has own velocity

- V < 2.405
 - Single mode exists
 - Single-mode fiber
- V > 2.405
 - Many modes exists
 - Multimode fiber
 - Usually, V >> 2.405

- V-parameter used to describe modes
- V-parameter equation
 - a is core radius
 - \bowtie λ is free-space light wavelength
 - n_1 and n_2 are the core/cladding indices

Multimode Step-Index Fibers

Number of modes:

$$N \approx V^2/2 \approx (2\pi a \, n_{\parallel}/\lambda)^2 2\Delta$$
 $(V >> 2.405)$

- Ray representation of multiple modes
 - High-order modes: Steep incidence (close to θ_c)
 - Low-order modes: Low grazing angles

- Ray picture not appropriate for few modes or single mode
- Mode coupling (mode mixing) possible due to interface inhomogeneities
- Measurements of multimode phenomena require uniform excitation of all modes

Power Distribution Between Core and Cladding

- Cladding field is not zero!
 - Mode's power carried in both core and cladding

• Fraction of total optical power in cladding:

$$P_{\text{cladding}}/P_{\text{core}} \approx 4/3\sqrt{N}$$
 (for $V >> 2.405$)

(N is number of modes)

• For small V, large fraction of power is in cladding. Avoid this!

SI Fibers: Numerical Aperture (NA)

- Coupling light into fiber
 - Only certain rays are accepted by fiber
 - Ray at θ_c at core/cladding interface
 - Is at θ_{max} at air/fiber input

- Input rays
 - Less than θ_{max} are guided
 - Greater than θ_{max} , are not guided
- Numerical aperture

$$NA \equiv \sin \theta_{\text{max}} = \sqrt{n_1^2 - n_2^2} \approx n_1 \sqrt{2\Delta}$$

Fiber-9

• Ex.: 50/125 fiber, n_1 =1.49, Δ = 1.5% $\Rightarrow \theta_{max}$ = 14.96°, NA =0.258

Cladding Modes and Leaky Modes

- Cladding modes:
 - Light carried in cladding
 - Remove with *mode stripper*

• Leaky mode

- Nonpropagating mode with power shared between core and cladding
- Difficult to predict and model
- Short-distance links can carry significant power in unguided modes and cladding

Step-Index Single-Mode (SI-SM) Fibers

- •For V < 2.405
 - Only one mode propagates ⇒ single-mode fiber
- · Generally,
 - -Small core radius (2 to 5 μm)
 - -Small ∆ (typically, <1%)
- Superior performance (over multimode fibers) for carrying high data-rate signals
 - The fiber of choice!

Fiber-11

 Mode is actually "doubly degenerate" (i.e., two orthogonal polarizations propagate), but still called a single mode

SM Fibers: Cutoff Wavelength and Power Distribution

- Cutoff wavelength (theoretical)
 - V is function of λ
 - Value of λ that makes V = 2.405 (step index fiber)

$$V_{\text{cutoff SI}} \equiv 2.405 = \frac{2\pi a n_1}{\lambda_{\text{cutoff}}} \sqrt{2\Delta}; \quad \Rightarrow \quad \lambda_{\text{cutoff}} = \frac{2\pi a n_1}{2.405} \sqrt{2\Delta}$$

- Actual cutoff wavelength
 - » Susceptible to variations in fiber parameters
 - » Usually measured
- Power distribution
 - At V = 2.405: ≈ 84% of mode's power in core
 - At V = 1: ≈ 30% in core (power at risk of being lost)
 - Do not want V too small
 - » Design compromise: $2.0 < V_{\rm SM SI} < 2.405$

SM Fibers: Mode Field Diameter

- Wave in SM fiber
 - Ray model *not* appropriate
 - Assumed mode in 1970s and 1980s: Gaussian shaped
 - » Modern fiber fields not Gaussian shape
 - Part of wave in core; part in cladding
 - » a does not describe "width" of wave
- Mode field diameter (MFD):
 - Useful measure of field width
 - Unfortunately, mathematically defined several ways
- MFD used to predict
 - Coupling losses
 - Splice losses
 - Connector losses
 - Propagation effects
 - Other effects in SM fibers

SM Fibers: MFD Definitions

- Circular fiber geometries assumed
- Measure field distributions
 - Near-field optical amplitude distribution, e(r)
 - Far-field amplitude distribution $E(\rho)$
 - » $\rho = 2\pi \sin \theta/\lambda$
 - Distributions are mathematically interrelated by the Hankel transform
- $|e(r)|^2$ and $|E(\rho)|^2$ are light *intensity* distributions
- MFD defined from measurement of near-field or far-field intensity patterns

- Distributions are related by $E(R,\rho) = \frac{k\cos\theta}{iR} \exp(ikR) \int_0^\infty e(r) J_0(r\rho) r dr$
 - Arr R is observation distance from fiber end $(R>>r^2_{max}/\lambda)$
 - $\rho = k \sin \theta$
- Neglecting cos θ term,

$$E(\rho) = \int e(r)J_0(r\rho)rdr = \frac{1}{\sqrt{2\pi}}H\{e(r)\}$$

- ♦ H{} is Hankel-transform operator
- Far-field angular distribution $E(\rho)$ is Hankel transform of near-field distribution

$$E(\rho) = \int_0^\infty e(r) J_0(r\rho) r \, dr = H\left\{e(r)\right\} / \sqrt{2\pi}$$

SM Fibers: MFD Definitions (cont.)

• MFD I: Near-field MFD (or Petermann I MFD):

$$d_{n} = 2\sqrt{2} \sqrt{\frac{\int_{0}^{\infty} e^{2}(r)r^{3}dr}{\int_{0}^{\infty} e^{2}(r)r\,dr}}$$

- MFD II: Far-field MFD (or Petermann II MFD):
 - Adopted as the international standard

$$d_f = 2\sqrt{2} \sqrt{\frac{\int_0^\infty E^2(\rho)\rho^3 d\rho}{\int_0^\infty E^2(\rho)\rho d\rho}}$$

- MFD III: Transverse-offset MFD
 - Growing out of favor, but easy to measure
 - Two identical butt-coupled single-mode fibers
 - Laterally displace one; measure transmitted power
 - MFD (d_a) = offset when power is 1/e times initial power

Fiber-15

· Transverse offset measurement

Multi-Step Single-Mode Fibers

- Pros: increased data rates, less loss susceptibility, more fiber design flexibility
- Cons: harder to fabricate, harder to model

Graded-Index Multimode (GI MM) Fibers

• Non-step-index profile *n(r)*

$$n(r) = \begin{cases} n_1 \sqrt{1 - 2\Delta(r/a)^g} & r \le a \\ n_1 \sqrt{1 - 2\Delta} \approx n_1 (1 - \Delta) = n_2 & r \ge a \end{cases}$$

• Wave confinement by sinusoidal path within core

- Cladding
 - Only isolates core from outside world
 - No guiding action

Graded-Index Profiles

Power-law profile model

$$n(r) = \begin{cases} n_1 \sqrt{1 - 2\Delta (r/a)^g} & r \le a \\ n_1 \sqrt{1 - 2\Delta} \approx n_1 (1 - \Delta) = n_2 & r \ge a \end{cases}$$

- $-n_1$: refractive index at core center
- $-n_2$: refractive index at core edge and in cladding
- $-\Delta$: fractional change in index (core center to edge)

$$\Delta = (n_1^2 - n_2^2) / 2n_1^2 \approx (n_1 - n_2) / n_1$$

» Same definition as SI

- » $\Delta \approx$ 1% to 2%
- Profile parameter or gradient, g
 - -g = 2: parabolic profile (Close to optimum for max data rate)
 - -g = 1: triangular profile
 - -g = ∞: step-index profile

GI Fibers: Number of Modes and NA

V-parameter (for typically small ∆):

$$V \approx (2\pi n_1 a/\lambda)\sqrt{2\Delta}$$
 (same as SI)

• Number of modes N:

$$N_{\rm GI} \approx \left(\frac{4a^2\pi^2n_1^2\Delta}{\lambda^2}\right)\left(\frac{g}{g+2}\right) = \left(\frac{V^2}{2}\right)\left(\frac{g}{g+2}\right) = N_{\rm SI}\left(\frac{g}{g+2}\right)$$

- Numerical aperture
 - -GI fiber NA more difficult to define than SI fiber NA
 - Maximum acceptance angle Θ_{\max} is function of radial position of ray entry location.
 - Local NA:

$$NA(r) = \begin{cases} NA(0) \left[1 - (r/a)^{g} \right] & \text{for } r < a \\ 0 & \text{for } r \ge a \end{cases}$$

» NA(0): NA at core center = $sqrt(n_1^2-n_2^2)$

Fiber-19

• Ex.: 50/125 GI fiber, g = 2, $\Delta = 1.34\%$, $\lambda = 850$ nm $\Rightarrow N = 504$ modes

Single-Mode Graded-Index (SM-GI) Fibers

- Can make SM-GI fibers
 - Triangle profile
 - Parabolic profile
- Cutoff location

$$V_{\rm cutoff} \approx 2.405 \sqrt{1 + \left(2/g\right)}$$

- Estimate:
 - » V_{cutoff} (triangle) = 4.38
 - » V_{cutoff} (parabolic) = 3.53
- All else being equal,
 - Core diameter of GI-SM fiber can be $\sqrt{1+\left(2/g\right)}\,$ larger than SI-SM fiber
 - » Easier coupling
 - » Easier splicing
 - » Lower microbend losses

Fiber Parameters: Summary

- Introduced
 - Fiber core and cladding
 - Fiber guiding properties
 - » Total internal reflection
 - » Guiding by refractive index change
 - Step-index or Graded-index refractive index profile
 - » GI: modeled with power-law profile
 - *Modes* in fibers
 - » Single-mode fiber
 - Mode field diameter (MFD)
 - Cutoff wavelength
 - » Multimode fiber
 - V-parameter
 - Core radius, a
 - Numerical aperture, NA

Fiber Parameters: Summary (cont.)

- Multimode fibers
 - -Pro:
 - » Moderate distances and/or data rates
 - » Easier coupling (larger core & NA)
 - -Con:
 - » Lack extreme bandwidth capacity
 - » Mode mixing makes unpredictable behavior at joints

- Single-mode fibers
 - Present fiber of choice
 - Pro:
 - » High data rate-distance combinations
 - » Lower fiber attenuation
 - Con:
 - » Lower fabrication tolerances
 - » Lower coupling efficiency
 - » Lower misalignment tolerance at joints
 - » Increased susceptibility to bending and spooling losses
- Costs:
 - About equal
 - Readily available

